COPPER

A PS Audio Publication

Issue 55 • Free Online Magazine

Issue 55 FEATURED

I. Don't. Know.

I’ve been involved in theater most of my life—my parents ran an amateur English theater group, performing everything from David Mamet to William Shakespeare to Neil Simon to Harold Pinter . (I thought it’d be fun to yaw you back and forth across genres and the Atlantic there.) They now run a performing arts center just outside Bangalore, India, with a packed schedule of drama, dance, and music.

I started working for the group as a lighting designer, and after a workshop in 1994, began writing plays. My two most recent full-length plays were part of a “TheatreScience” project, written in collaboration with scientists from the National Centre for Biological Sciences (NCBS) in Bangalore. We spent weeks on the beautiful NCBS campus, talking to microbiologists, shadowing them in their labs (including one session that started with a live rat and ended just minutes later with finely sliced rat brain on a glass slide), doing workshops together, playing frisbee soccer, and hanging out in the canteen.

If there was a theme to this immersive research, it was the recurring line, “I / We don’t know.” The scientists were almost proud to say it, and said it often. There were two reasons for these frequent declarations of ignorance. One was that the pursuit of knowledge is specialized to an extreme. A microbiologist who spends years studying how one particular protein crosses one particular cell wall is in danger of knowing less about science in general today than a layperson who reads popular science journals such as… well not Popular Science… have you seen it lately? (Anyone here remember Omni?)

The other reason is that while we can break down many processes to an enzyme and cell-wall level, stepping back and understanding how it works in the context of a multicellular being causes an exponential leap in complexity. The answer to nearly every “multicellular” higher context question I asked (including, “What are the potential uses of this research?”),  was simply, “We don’t know”.

You probably know where I’m going with this, but let’s detour abruptly into my other passion: bicycling. Two wheels and a frame—this is a system that’s many orders of magnitude less complex than even a single cell. (If you’re not sure about that, ask a microbiologist to describe in detail the mechanism by which a virus crosses a cell wall—it’s a Greek epic over many acts, with heroic enzymes, sneaky sidekicks, protein choruses, side skirmishes, and much love and loss.)

Cyclists have been obsessed with speed since the very start, and yet it’s only in the last couple of years that the industry is waking up to what retrogrouches have insisted on all along—that supple, tubby tires are just as fast, or even faster than, skinny tires. The problem was belief in isolated numbers—tests on rotating steel drums showed that, as expected, a narrow, harder tire with a smaller contact patch had less friction, and therefore, lower rolling resistance than a wider, softer tire.

The road may be long and winding, or take you home to the place you belong, or even become your bride, but it is not a steel drum. So guess what happens when we take those tires out of the lab and put them on your bicycle? They become part of a system, and now, those fatter more supple tires conform to road irregularities, absorbing the shocks that narrow, 100+ psi tires transfer to the frame and rider. So the fat tire tends to dissipate the energy of bumps as heat from tire flex, and the narrow tire tends to use that energy to lift up the rider, and counter forward movement. And also, since we’re now part of a system, we have to consider effects that are hard to measure such increased rider efficiency due to greater comfort, and increased rider enjoyment in terms of flow.

That brings us to an interesting reason why so many cyclists firmly believe that a narrow, high pressure tire is faster. Jan Heine, the irascible cyclist behind Bicycle Quarterly magazine, has been writing a series of blog posts debunking myths in the cycling world. In the post about tire width, he writes about a placebo effect involving vibration frequency: “The faster we ride, the higher the frequency at which our bike vibrates, because our tires encounter road irregularities at a higher speed. However, narrower tires also increase the frequency of the vibrations they transmit. Basically, a bike with narrow tires feels faster even though it may actually be slower.” [You can see Heine, Jan. 2018, January 3. 12 Myths in Cycling (1): Wider Tires Are Slower here.]

The “problem” with this system then, is that it connects with a galactically complex multicellular being, whose perceptions of the world are either easily fooled, or really only just being fully understood. And that only one aspect of the system is considered in the “proof”. For example the many people debunking high-resolution digital music saying it’s just wasting space by encoding ultrasound, not realizing, among other things, the complexity of digital filters and their effect on the audible range.

Recently, I was watching a series of videos presented by someone we’ll call Paul. Because he’s called Paul. Even though he is an audio engineer making a product that asks me to part with my hard-earned (well… earned) money, I was heartened to hear him say those three most important words: “I don’t know”.

Looking down the comments though, there was disappointment and even mild outrage that he uttered those words in public. Now, I know that a scientist beheading rats in the depths of a research lab is not an engineer whose work has a retail price tag on it. I understand that an audio engineer with a hi-fi brand needs to answer your questions about the how’s and why’s of its designs. But also consider this: An audio engineer uses years of training and experience to design a circuit or cable, knows what to change to affect the sound, knows how to listen for these changes and understand what they mean in the long term for the system (remember, higher vibration frequency doesn’t mean a faster bicycle), and then knows how to consistently recreate this sound over tens or hundreds or thousands of units in a manufacturing process.

So why is it such a let down if he says he doesn’t know the exact mechanism by which changing this capacitor or that fuse changes the sound? Isn’t it far more important that he’s open to the fact that it does change the sound, and therefore “listens” to capacitors (and resistors and solder and connectors), rather than just finding ones that meet the specs on paper, and slapping them into your high-fidelity product?

I’ve been lamenting for a long time now that people find saying “I don’t know” harder than passing kidney stones. People like that have a conviction about everything that I don’t have about anything. I realize that I can’t let them intimidate me, and I need to stop apologizing for being an audiophile, and that doing so is, in some way, apologizing for being me.

Now, to screw my courage to the sticking-place and write that review on power cords. Yes, I heard a big difference.

More from Issue 55

View All Articles in Issue 55

Search Copper Magazine

#226 JJ Murphy’s Sleep Paralysis is a Genre-Bending Musical Journey Through Jazz, Fusion and More by Frank Doris Jan 05, 2026 #226 Stewardship by Consent by B. Jan Montana Jan 05, 2026 #226 Food, Music, and Sensory Experience: An Interview With Professor Jonathan Zearfoss of the Culinary Institute of America by Joe Caplan Jan 05, 2026 #226 Studio Confidential: A Who’s Who of Recording Engineers Tell Their Stories by Frank Doris Jan 05, 2026 #226 Pilot Radio is Reborn, 50 Years Later: Talking With CEO Barak Epstein by Frank Doris Jan 05, 2026 #226 The Vinyl Beat Goes Down to Tijuana (By Way of Los Angeles), Part One by Rudy Radelic Jan 05, 2026 #226 Capital Audiofest 2025: Must-See Stereo, Part Two by Frank Doris Jan 05, 2026 #226 My Morning Jacket’s Carl Broemel and Tyler Ramsey Collaborate on Their Acoustic Guitar Album, Celestun by Ray Chelstowski Jan 05, 2026 #226 The People Who Make Audio Happen: CanJam SoCal 2025, Part Two by Harris Fogel Jan 05, 2026 #226 How to Play in a Rock Band, 19: Touring Can Make You Crazy, Part One by Frank Doris Jan 05, 2026 #226 Linda Ronstadt Goes Bigger by Wayne Robins Jan 05, 2026 #226 From The Audiophile’s Guide: Active Room Correction and Digital Signal Processing by Paul McGowan Jan 05, 2026 #226 PS Audio in the News by Frank Doris Jan 05, 2026 #226 Back to My Reel-to-Reel Roots, Part 25: Half-Full, Not Empty by Ken Kessler Jan 05, 2026 #226 Happy New Year! by Frank Doris Jan 05, 2026 #226 Turn It Down! by Peter Xeni Jan 05, 2026 #226 Ghost Riders by James Schrimpf Jan 05, 2026 #226 A Factory Tour of Audio Manufacturer German Physiks by Markus "Marsu" Manthey Jan 04, 2026 #225 Capital Audiofest 2025: Must-See Stereo, Part One by Frank Doris Dec 01, 2025 #225 Otis Taylor and the Electrics Delivers a Powerful Set of Hypnotic Modern Blues by Frank Doris Dec 01, 2025 #225 A Christmas Miracle by B. Jan Montana Dec 01, 2025 #225 T.H.E. Show New York 2025, Part Two: Plenty to See, Hear, and Enjoy by Frank Doris Dec 01, 2025 #225 Underappreciated Artists, Part One: Martin Briley by Rich Isaacs Dec 01, 2025 #225 Rock and Roll is Here to Stay by Wayne Robins Dec 01, 2025 #225 A Lifetime of Holiday Record (and CD) Listening by Rudy Radelic Dec 01, 2025 #225 Little Feat: Not Saying Goodbye, Not Yet by Ray Chelstowski Dec 01, 2025 #225 How to Play in a Rock Band, Part 18: Dealing With Burnout by Frank Doris Dec 01, 2025 #225 The People Who Make Audio Happen: CanJam SoCal 2025 by Harris Fogel Dec 01, 2025 #225 Chicago’s Sonic Sanctuaries: Four Hi‑Fi Listening Bars Channeling the Jazz‑Kissa Spirit by Olivier Meunier-Plante Dec 01, 2025 #225 From The Audiophile’s Guide: Controlling Bass Frequencies Through Membrane Absorbers (and How to Build Your Own) by Paul McGowan Dec 01, 2025 #225 Your Editor’s Tips for Attending Audio Shows by Frank Doris Dec 01, 2025 #225 PS Audio in the News by Frank Doris Dec 01, 2025 #225 Back to My Reel-to-Reel Roots, Part 24 by Ken Kessler Dec 01, 2025 #225 Holiday Music by Frank Doris Dec 01, 2025 #225 Puppy Prognostication by Peter Xeni Dec 01, 2025 #225 How to Post Comments on Copper by Frank Doris Dec 01, 2025 #225 Living Color by Rudy Radelic Dec 01, 2025 #224 T.H.E. Show New York 2025, Part One: A New Beginning by Frank Doris Nov 03, 2025 #224 Fool’s Leap of Faith is the Extraordinary Octave Records Debut from Singer/Songwriter Tyler Burba and Visit by Frank Doris Nov 03, 2025 #224 The Beatles’ “Aeolian Cadences.” What? by Wayne Robins Nov 03, 2025 #224 Persona Non Grata by B. Jan Montana Nov 03, 2025 #224 Talking With Recording Engineer Barry Diament of Soundkeeper Recordings, Part Two by Frank Doris Nov 03, 2025 #224 B Sides, B Movies, and Beware of Zombies by Rudy Radelic Nov 03, 2025 #224 The Burn-In Chronicles: 1,000 Hours to Sonic Salvation by Olivier Meunier-Plante Nov 03, 2025 #224 A Conversation With Mat Weisfeld of VPI Industries by Joe Caplan Nov 03, 2025 #224 Blues-Rocker Kenny Wayne Shepherd Celebrates 30 Years of Ledbetter Heights by Ray Chelstowski Nov 03, 2025 #224 Playing in a Rock Band, 17: When Good Gigs Go Bad, Part Two by Frank Doris Nov 03, 2025

I. Don't. Know.

I’ve been involved in theater most of my life—my parents ran an amateur English theater group, performing everything from David Mamet to William Shakespeare to Neil Simon to Harold Pinter . (I thought it’d be fun to yaw you back and forth across genres and the Atlantic there.) They now run a performing arts center just outside Bangalore, India, with a packed schedule of drama, dance, and music.

I started working for the group as a lighting designer, and after a workshop in 1994, began writing plays. My two most recent full-length plays were part of a “TheatreScience” project, written in collaboration with scientists from the National Centre for Biological Sciences (NCBS) in Bangalore. We spent weeks on the beautiful NCBS campus, talking to microbiologists, shadowing them in their labs (including one session that started with a live rat and ended just minutes later with finely sliced rat brain on a glass slide), doing workshops together, playing frisbee soccer, and hanging out in the canteen.

If there was a theme to this immersive research, it was the recurring line, “I / We don’t know.” The scientists were almost proud to say it, and said it often. There were two reasons for these frequent declarations of ignorance. One was that the pursuit of knowledge is specialized to an extreme. A microbiologist who spends years studying how one particular protein crosses one particular cell wall is in danger of knowing less about science in general today than a layperson who reads popular science journals such as… well not Popular Science… have you seen it lately? (Anyone here remember Omni?)

The other reason is that while we can break down many processes to an enzyme and cell-wall level, stepping back and understanding how it works in the context of a multicellular being causes an exponential leap in complexity. The answer to nearly every “multicellular” higher context question I asked (including, “What are the potential uses of this research?”),  was simply, “We don’t know”.

You probably know where I’m going with this, but let’s detour abruptly into my other passion: bicycling. Two wheels and a frame—this is a system that’s many orders of magnitude less complex than even a single cell. (If you’re not sure about that, ask a microbiologist to describe in detail the mechanism by which a virus crosses a cell wall—it’s a Greek epic over many acts, with heroic enzymes, sneaky sidekicks, protein choruses, side skirmishes, and much love and loss.)

Cyclists have been obsessed with speed since the very start, and yet it’s only in the last couple of years that the industry is waking up to what retrogrouches have insisted on all along—that supple, tubby tires are just as fast, or even faster than, skinny tires. The problem was belief in isolated numbers—tests on rotating steel drums showed that, as expected, a narrow, harder tire with a smaller contact patch had less friction, and therefore, lower rolling resistance than a wider, softer tire.

The road may be long and winding, or take you home to the place you belong, or even become your bride, but it is not a steel drum. So guess what happens when we take those tires out of the lab and put them on your bicycle? They become part of a system, and now, those fatter more supple tires conform to road irregularities, absorbing the shocks that narrow, 100+ psi tires transfer to the frame and rider. So the fat tire tends to dissipate the energy of bumps as heat from tire flex, and the narrow tire tends to use that energy to lift up the rider, and counter forward movement. And also, since we’re now part of a system, we have to consider effects that are hard to measure such increased rider efficiency due to greater comfort, and increased rider enjoyment in terms of flow.

That brings us to an interesting reason why so many cyclists firmly believe that a narrow, high pressure tire is faster. Jan Heine, the irascible cyclist behind Bicycle Quarterly magazine, has been writing a series of blog posts debunking myths in the cycling world. In the post about tire width, he writes about a placebo effect involving vibration frequency: “The faster we ride, the higher the frequency at which our bike vibrates, because our tires encounter road irregularities at a higher speed. However, narrower tires also increase the frequency of the vibrations they transmit. Basically, a bike with narrow tires feels faster even though it may actually be slower.” [You can see Heine, Jan. 2018, January 3. 12 Myths in Cycling (1): Wider Tires Are Slower here.]

The “problem” with this system then, is that it connects with a galactically complex multicellular being, whose perceptions of the world are either easily fooled, or really only just being fully understood. And that only one aspect of the system is considered in the “proof”. For example the many people debunking high-resolution digital music saying it’s just wasting space by encoding ultrasound, not realizing, among other things, the complexity of digital filters and their effect on the audible range.

Recently, I was watching a series of videos presented by someone we’ll call Paul. Because he’s called Paul. Even though he is an audio engineer making a product that asks me to part with my hard-earned (well… earned) money, I was heartened to hear him say those three most important words: “I don’t know”.

Looking down the comments though, there was disappointment and even mild outrage that he uttered those words in public. Now, I know that a scientist beheading rats in the depths of a research lab is not an engineer whose work has a retail price tag on it. I understand that an audio engineer with a hi-fi brand needs to answer your questions about the how’s and why’s of its designs. But also consider this: An audio engineer uses years of training and experience to design a circuit or cable, knows what to change to affect the sound, knows how to listen for these changes and understand what they mean in the long term for the system (remember, higher vibration frequency doesn’t mean a faster bicycle), and then knows how to consistently recreate this sound over tens or hundreds or thousands of units in a manufacturing process.

So why is it such a let down if he says he doesn’t know the exact mechanism by which changing this capacitor or that fuse changes the sound? Isn’t it far more important that he’s open to the fact that it does change the sound, and therefore “listens” to capacitors (and resistors and solder and connectors), rather than just finding ones that meet the specs on paper, and slapping them into your high-fidelity product?

I’ve been lamenting for a long time now that people find saying “I don’t know” harder than passing kidney stones. People like that have a conviction about everything that I don’t have about anything. I realize that I can’t let them intimidate me, and I need to stop apologizing for being an audiophile, and that doing so is, in some way, apologizing for being me.

Now, to screw my courage to the sticking-place and write that review on power cords. Yes, I heard a big difference.

0 comments

Leave a comment

0 Comments

Your avatar

Loading comments...

🗑️ Delete Comment

Enter moderator password to delete this comment: