COPPER

A PS Audio Publication

Issue 73 • Free Online Magazine

Issue 73 THE AUDIO CYNIC

Immaterial Science

Back in Copper #66, I wrote a Cynic column entitled “Nothing New Under the Sun?“—and judging from the comments on that article, my point was either unclear, elusive, or misunderstood. I’m about to comment on a similar topic, and will do my best to be clear—clear as a flawless diamond, a material which will be mentioned momentarily.

I’m a materials science nerd, and I make no bones about that. I worked in the world of racing engines, where there were frequent debates over the comparative properties of 4340 steel versus 5140 or 300M (materials used in forged or billet connecting rods and crankshafts), where titanium is preferred to steel (again, rods), tool steel versus metal matrix composite (pushrods), 4032 versus 2618 (aluminum alloys used in forged pistons), and on and on. I found it fascinating, and in recent decades, the number of newly-developed materials has exploded—metaphorically, one hopes.

In the audio world, the use of advanced or newly-developed material seems to go in waves. Think of what Stephen Jay Gould called “punctuated equilibrium“: put briefly, Gould postulated that things stay the same until they don’t. –Yes, that does sound a bit like a zen koan. To be more precise: rather than viewing evolution as a continuous, linear process, Gould indicated that new species appear in a sort of a blip—“punctuations”—and then continue in stasis.

Back at the beginnings of audio technology —say, the end of the 19th century and the beginning of the 20th— materials used were largely natural. Gramophone soundboxes used proprietary blends of materials for their diaphragms, in search of the magic combination of durability, low resonance, and extended frequency range. In some ways the requirements are conflicting, and that continued as cone drivers began to be developed: cones were generally molded or stamped pulp paper, with competing brands extolling the virtues of their particular mix. Cone surrounds were either an accordion continuation of the cone itself, or leather, or cloth. The materials used generally possessed a low Q-–meaning that they were not highly resonant.

Not surprisingly, the concept of Q first appeared in work conducted by Western Electric, where much of the fundamental development of early audio and electronic products occurred (as discussed . The term was originally used to describe the tendency of an inductor to resonate, but the term’s usage broadened to include mechanical resonance (or lack of damping), as well as the roll-off characteristics of a loudspeaker enclosure.

As speakers were developed with more-extended high frequency response compared to a standard cone driver, the conflicting requirements of stiffness/rigidity (to allow controlled movement) and lack of resonance (to enable flatter frequency response and greater listenability) came into play. Again, Western Electric was involved; the legendary 555 was developed in 1926, and is generally considered the first compression driver. The 555 used a carefully formed domed diaphragm of fairly soft aluminum, with an attached surround formed from the same piece. The diaphragm’s “swirly” surround would be carried forward in almost all compression drivers, and can still be seen in modern units.

It’s been nearly a century since the 555 was developed, and those conflicting demands haven’t vanished. In the last decade or so, the benefits of ever-stiffer cones, domes, and diaphragms have been trumpeted, using everything from beryllium, ceramics, even vapor-deposited diamond. Tweeters using such materials generally have response well above the range of audibility, but those very stiff materials can do very ugly things when they go into breakup mode. Paper cones or soft domes simply mush out, so to speak, when they break up, with fairly low-Q resonance modes, and just won’t go any higher. The ultra-rigid driver materials, on the other hand, can generate very high-Q resonant spikes that are inharmonic and offensive to the ear. Careful crossover design becomes extremely important for such drivers, to ensure that they are never driven at their breakup frequencies.

Newly-formulated materials aren’t always a panacea, and sometimes seem to be used more for marketing value than for their performance. Even the cost of certain materials—like diamond or to a lesser extent, carbon fiber—can have a certain status appeal completely separate from their performance. Indeed, if the “snobby” material is used improperly, performance may be worse than good ol’ paper and plywood.

Exotic materials can be used in audio in almost any application, from cartridge cantilevers to speaker boxes. Whether speaker enclosures of aluminum, proprietary laminate, or carbon fiber perform better than the old standards of medium density fibreboard or plywood, has to be evaluated on a case-by-case basis.  Our friend Peter Ledermann at Soundsmith makes a wonderful cartridge with a cantilever made from a treated cactus needle, for goodness’ sake. Generalizations are just generalizations—not fact.

Audio is both fascinating and frustrating, simply because there are no easy answers. No one approach is IT.

For those dogmatists who extol the virtues of their ONE TRUE WAY on audio forums, I say: have fun! …But you’re wrong. ;->

More from Issue 73

View All Articles in Issue 73

Search Copper Magazine

#227 Seth Lewis Gets in the Groove With Take a Look Around: a Tribute to the Meters by Frank Doris Feb 02, 2026 #227 Passport to Sound: May Anwar’s Audio Learning Experience for Young People by Frank Doris Feb 02, 2026 #227 Conjectures on Cosmic Consciousness by B. Jan Montana Feb 02, 2026 #227 The Big Takeover Turns 45 by Wayne Robins Feb 02, 2026 #227 Music and Chocolate: On the Sensory Connection by Joe Caplan Feb 02, 2026 #227 Singer/Songwriter Chris Berardo: Getting Wilder All the Time by Ray Chelstowski Feb 02, 2026 #227 The Earliest Stars of Country Music, Part One by Jeff Weiner Feb 02, 2026 #227 The Vinyl Beat Goes Down to Tijuana (By Way of Los Angeles), Part Two by Rudy Radelic Feb 02, 2026 #227 How to Play in a Rock Band, 20: On the Road With Blood, Sweat & Tears’ Guitarist Gabe Cummins by Frank Doris Feb 02, 2026 #227 From The Audiophile’s Guide: Audio Specs and Measuring by Paul McGowan Feb 02, 2026 #227 Our Brain is Always Listening by Peter Trübner Feb 02, 2026 #227 PS Audio in the News by PS Audio Staff Feb 02, 2026 #227 The Listening Chair: Sleek Style and Sound From the Luxman L3 by Howard Kneller Feb 02, 2026 #227 The Los Angeles and Orange County Audio Society Celebrates Its 32nd Anniversary, Honoring David and Sheryl Lee Wilson and Bernie Grundman by Harris Fogel Feb 02, 2026 #227 Back to My Reel-to-Reel Roots, Part 26: Half Full – Not Half Empty, Redux by Ken Kessler Feb 02, 2026 #227 That's What Puzzles Us... by Frank Doris Feb 02, 2026 #227 Record-Breaking by Peter Xeni Feb 02, 2026 #227 The Long and Winding Road by B. Jan Montana Feb 02, 2026 #226 JJ Murphy’s Sleep Paralysis is a Genre-Bending Musical Journey Through Jazz, Fusion and More by Frank Doris Jan 05, 2026 #226 Stewardship by Consent by B. Jan Montana Jan 05, 2026 #226 Food, Music, and Sensory Experience: An Interview With Professor Jonathan Zearfoss of the Culinary Institute of America by Joe Caplan Jan 05, 2026 #226 Studio Confidential: A Who’s Who of Recording Engineers Tell Their Stories by Frank Doris Jan 05, 2026 #226 Pilot Radio is Reborn, 50 Years Later: Talking With CEO Barak Epstein by Frank Doris Jan 05, 2026 #226 The Vinyl Beat Goes Down to Tijuana (By Way of Los Angeles), Part One by Rudy Radelic Jan 05, 2026 #226 Capital Audiofest 2025: Must-See Stereo, Part Two by Frank Doris Jan 05, 2026 #226 My Morning Jacket’s Carl Broemel and Tyler Ramsey Collaborate on Their Acoustic Guitar Album, Celestun by Ray Chelstowski Jan 05, 2026 #226 The People Who Make Audio Happen: CanJam SoCal 2025, Part Two by Harris Fogel Jan 05, 2026 #226 How to Play in a Rock Band, 19: Touring Can Make You Crazy, Part One by Frank Doris Jan 05, 2026 #226 Linda Ronstadt Goes Bigger by Wayne Robins Jan 05, 2026 #226 From The Audiophile’s Guide: Active Room Correction and Digital Signal Processing by Paul McGowan Jan 05, 2026 #226 PS Audio in the News by Frank Doris Jan 05, 2026 #226 Back to My Reel-to-Reel Roots, Part 25: Half-Full, Not Empty by Ken Kessler Jan 05, 2026 #226 Happy New Year! by Frank Doris Jan 05, 2026 #226 Turn It Down! by Peter Xeni Jan 05, 2026 #226 Ghost Riders by James Schrimpf Jan 05, 2026 #226 A Factory Tour of Audio Manufacturer German Physiks by Markus "Marsu" Manthey Jan 04, 2026 #225 Capital Audiofest 2025: Must-See Stereo, Part One by Frank Doris Dec 01, 2025 #225 Otis Taylor and the Electrics Delivers a Powerful Set of Hypnotic Modern Blues by Frank Doris Dec 01, 2025 #225 A Christmas Miracle by B. Jan Montana Dec 01, 2025 #225 T.H.E. Show New York 2025, Part Two: Plenty to See, Hear, and Enjoy by Frank Doris Dec 01, 2025 #225 Underappreciated Artists, Part One: Martin Briley by Rich Isaacs Dec 01, 2025 #225 Rock and Roll is Here to Stay by Wayne Robins Dec 01, 2025 #225 A Lifetime of Holiday Record (and CD) Listening by Rudy Radelic Dec 01, 2025 #225 Little Feat: Not Saying Goodbye, Not Yet by Ray Chelstowski Dec 01, 2025 #225 How to Play in a Rock Band, Part 18: Dealing With Burnout by Frank Doris Dec 01, 2025 #225 The People Who Make Audio Happen: CanJam SoCal 2025 by Harris Fogel Dec 01, 2025 #225 Chicago’s Sonic Sanctuaries: Four Hi‑Fi Listening Bars Channeling the Jazz‑Kissa Spirit by Olivier Meunier-Plante Dec 01, 2025

Immaterial Science

Back in Copper #66, I wrote a Cynic column entitled “Nothing New Under the Sun?“—and judging from the comments on that article, my point was either unclear, elusive, or misunderstood. I’m about to comment on a similar topic, and will do my best to be clear—clear as a flawless diamond, a material which will be mentioned momentarily.

I’m a materials science nerd, and I make no bones about that. I worked in the world of racing engines, where there were frequent debates over the comparative properties of 4340 steel versus 5140 or 300M (materials used in forged or billet connecting rods and crankshafts), where titanium is preferred to steel (again, rods), tool steel versus metal matrix composite (pushrods), 4032 versus 2618 (aluminum alloys used in forged pistons), and on and on. I found it fascinating, and in recent decades, the number of newly-developed materials has exploded—metaphorically, one hopes.

In the audio world, the use of advanced or newly-developed material seems to go in waves. Think of what Stephen Jay Gould called “punctuated equilibrium“: put briefly, Gould postulated that things stay the same until they don’t. –Yes, that does sound a bit like a zen koan. To be more precise: rather than viewing evolution as a continuous, linear process, Gould indicated that new species appear in a sort of a blip—“punctuations”—and then continue in stasis.

Back at the beginnings of audio technology —say, the end of the 19th century and the beginning of the 20th— materials used were largely natural. Gramophone soundboxes used proprietary blends of materials for their diaphragms, in search of the magic combination of durability, low resonance, and extended frequency range. In some ways the requirements are conflicting, and that continued as cone drivers began to be developed: cones were generally molded or stamped pulp paper, with competing brands extolling the virtues of their particular mix. Cone surrounds were either an accordion continuation of the cone itself, or leather, or cloth. The materials used generally possessed a low Q-–meaning that they were not highly resonant.

Not surprisingly, the concept of Q first appeared in work conducted by Western Electric, where much of the fundamental development of early audio and electronic products occurred (as discussed . The term was originally used to describe the tendency of an inductor to resonate, but the term’s usage broadened to include mechanical resonance (or lack of damping), as well as the roll-off characteristics of a loudspeaker enclosure.

As speakers were developed with more-extended high frequency response compared to a standard cone driver, the conflicting requirements of stiffness/rigidity (to allow controlled movement) and lack of resonance (to enable flatter frequency response and greater listenability) came into play. Again, Western Electric was involved; the legendary 555 was developed in 1926, and is generally considered the first compression driver. The 555 used a carefully formed domed diaphragm of fairly soft aluminum, with an attached surround formed from the same piece. The diaphragm’s “swirly” surround would be carried forward in almost all compression drivers, and can still be seen in modern units.

It’s been nearly a century since the 555 was developed, and those conflicting demands haven’t vanished. In the last decade or so, the benefits of ever-stiffer cones, domes, and diaphragms have been trumpeted, using everything from beryllium, ceramics, even vapor-deposited diamond. Tweeters using such materials generally have response well above the range of audibility, but those very stiff materials can do very ugly things when they go into breakup mode. Paper cones or soft domes simply mush out, so to speak, when they break up, with fairly low-Q resonance modes, and just won’t go any higher. The ultra-rigid driver materials, on the other hand, can generate very high-Q resonant spikes that are inharmonic and offensive to the ear. Careful crossover design becomes extremely important for such drivers, to ensure that they are never driven at their breakup frequencies.

Newly-formulated materials aren’t always a panacea, and sometimes seem to be used more for marketing value than for their performance. Even the cost of certain materials—like diamond or to a lesser extent, carbon fiber—can have a certain status appeal completely separate from their performance. Indeed, if the “snobby” material is used improperly, performance may be worse than good ol’ paper and plywood.

Exotic materials can be used in audio in almost any application, from cartridge cantilevers to speaker boxes. Whether speaker enclosures of aluminum, proprietary laminate, or carbon fiber perform better than the old standards of medium density fibreboard or plywood, has to be evaluated on a case-by-case basis.  Our friend Peter Ledermann at Soundsmith makes a wonderful cartridge with a cantilever made from a treated cactus needle, for goodness’ sake. Generalizations are just generalizations—not fact.

Audio is both fascinating and frustrating, simply because there are no easy answers. No one approach is IT.

For those dogmatists who extol the virtues of their ONE TRUE WAY on audio forums, I say: have fun! …But you’re wrong. ;->

0 comments

Leave a comment

0 Comments

Your avatar

Loading comments...

🗑️ Delete Comment

Enter moderator password to delete this comment:

✏️ Edit Comment

Enter your email to verify ownership: