COPPER

A PS Audio Publication

Issue 15 • Free Online Magazine

Issue 15 BACK TO BASICS

What is a CD player?

We all understand what a CD player is; a box we insert CDs and play them.

But, not so fast. What’s going on inside? What are the basic elements of a CD player and why do Audiophiles not use them very often, preferring instead CD transports and DACs?

Back to the beginning

On October 1, 1982, Sony placed the first nail in the LP’s coffin with its release of the world’s first commercial compact disc player, the CDP-101, in Japan. The launch signaled a new audio medium that promised to deliver a crystal-clear music experience for a generation of consumers accustomed to vinyl records.

It was touted as “PerfectSound Forever”. It was anything but perfect.

The CDP-101 retailed for about $674 (roughly $1609 in today’s dollars), and was launched alongside a group of 50 classical and pop CDs published by CBS Records. Names like Mozart, Tchaikovsky, and Schubert shared the bill with more modern artists such as Billy Joel, Pink Floyd, and Journey. Each disc cost $14 apiece (about $33 in today’s dollars).

From vinyl to optical

It was Sony and Philips that together invented the CD player, though they hadn’t come up with the technology itself. Instead, American engineer James T. Russell invented the first system to record digital information on an optical transparent foil. He applied for a patent in 1966, and it was granted in 1970. Sony and Philips hijacked the technology, at first for laser discs, later for the audio CD, but Russell (and the company he had sold the patent to) took them to court and won, forcing them to license his invention.

That first player

So, what was inside that first player? The same three basic elements found in every CD and DVD player today: a turntable, an optical reader, and a DAC.

Let’s first take a look at the turntable and optical reader.

The turntable is exactly what it sounds like, a spinning platter that rotates the CD itself. Speeds are quite a bit faster than an album, averaging 600 rpm as opposed to 33 1/3 rpm for vinyl. When you place a CD atop the turntable, the label faces you, the optical surface with all the bits faces down.

Below the CD optical disc waits a laser mounted to a moving sled or carriage. The carriage can move back and forth along the CD as it spins. In close proximity to the laser beam is a photo receptor that converts the reflected laser light into an electric current.

Once converted to electrical signals, the ones and zeros we’re so familiar with are sent to the CD player’s internal DAC.

The DAC inside

DAC stands for Digital To Audio Converter. As its name implies, this circuitry takes the ones and zeros we call digital audio, and converts their message into audio—sound we can then use to play through speakers or headphones.

The bits of digital audio form a type of machine language with words, just like in any language. In digital audio, words represent numbers, and each number represents a higher or lower part of the music’s loudness.

The maximum number of bits within a word determine the number of possible words. CD words have 16 bits, which means CD systems are limited to 65,536 words (compared to 16,777,216 possible words in a 24 bit system). Within those restrictions, digital words form louder and softer levels that the DAC turns into sound.

The difference between a CD player and transport

Most Audiophiles no longer use CD players, preferring instead to separate the duties of the CD player into two separate pieces of equipment, the Transport and DAC.

An aftermarket transport contains the turntable, laser mechanism, photo receptor, and associated electronics to convert what is on the CD to electrical ones and zeros.

One of the more interesting aspects of the optical extraction process is the format the ones and zeros are prepared in, called I2S.

I2S (pronounced, “I squared S”) has multiple elements of digital audio: several clocks and the digital music data itself. Clocks are needed to keep all the bits coming at the proper time and organizes the order in which they appear.

Some transports output this I2S format, but most do not. Instead, the four separate digital audio clocks and data of I2S, are mixed together and output through a single RCA connector, optical cable, or XLR. This new format, which must later be untangled back into I2S inside the DAC, is known as S/PDIF, an acronym for Sony Philips Digital Interface.

Why CD players have fallen out of favor

The vast majority of high-end audio systems separate the duties of the all-in-one CD player into two units, the transport and DAC. Separating these necessary components in a digital audio system results in better sound, or at least that’s the theory.

There’s no reason whatsoever that separating CD players into two chassis is superior other than the fact it permits manufacturers to lavish more attention on each, as well as allows consumers to mix and match to best advantage.

The venerable all-in-one CD player might just have a comeback someday, if enough high-end manufacturers decide it’s something their customers want. Otherwise, CD players—the very equipment that forever changed the audio landscape—will likely be relegated to the basement and audio museums.

More from Issue 15

View All Articles in Issue 15

Past Issues

225 issues and counting

View All Past Issues

Search Copper Magazine

#225 Capital Audiofest 2025: Must-See Stereo, Part One by Frank Doris Dec 01, 2025 #225 Otis Taylor and the Electrics Delivers a Powerful Set of Hypnotic Modern Blues by Frank Doris Dec 01, 2025 #225 A Christmas Miracle by B. Jan Montana Dec 01, 2025 #225 T.H.E. Show New York 2025, Part Two: Plenty to See, Hear, and Enjoy by Frank Doris Dec 01, 2025 #225 Underappreciated Artists, Part One: Martin Briley by Rich Isaacs Dec 01, 2025 #225 Rock and Roll is Here to Stay by Wayne Robins Dec 01, 2025 #225 A Lifetime of Holiday Record (and CD) Listening by Rudy Radelic Dec 01, 2025 #225 Little Feat: Not Saying Goodbye, Not Yet by Ray Chelstowski Dec 01, 2025 #225 How to Play in a Rock Band, Part 18: Dealing With Burnout by Frank Doris Dec 01, 2025 #225 The People Who Make Audio Happen: CanJam SoCal 2025 by Harris Fogel Dec 01, 2025 #225 Chicago’s Sonic Sanctuaries: Four Hi‑Fi Listening Bars Channeling the Jazz‑Kissa Spirit by Olivier Meunier-Plante Dec 01, 2025 #225 From The Audiophile’s Guide: Controlling Bass Frequencies Through Membrane Absorbers (and How to Build Your Own) by Paul McGowan Dec 01, 2025 #225 Your Editor’s Tips for Attending Audio Shows by Frank Doris Dec 01, 2025 #225 PS Audio in the News by Frank Doris Dec 01, 2025 #225 Back to My Reel-to-Reel Roots, Part 24 by Ken Kessler Dec 01, 2025 #225 Holiday Music by Frank Doris Dec 01, 2025 #225 Puppy Prognostication by Peter Xeni Dec 01, 2025 #225 How to Post Comments on Copper by Frank Doris Dec 01, 2025 #225 Living Color by Rudy Radelic Dec 01, 2025 #224 T.H.E. Show New York 2025, Part One: A New Beginning by Frank Doris Nov 03, 2025 #224 Fool’s Leap of Faith is the Extraordinary Octave Records Debut from Singer/Songwriter Tyler Burba and Visit by Frank Doris Nov 03, 2025 #224 The Beatles’ “Aeolian Cadences.” What? by Wayne Robins Nov 03, 2025 #224 Persona Non Grata by B. Jan Montana Nov 03, 2025 #224 Talking With Recording Engineer Barry Diament of Soundkeeper Recordings, Part Two by Frank Doris Nov 03, 2025 #224 B Sides, B Movies, and Beware of Zombies by Rudy Radelic Nov 03, 2025 #224 The Burn-In Chronicles: 1,000 Hours to Sonic Salvation by Olivier Meunier-Plante Nov 03, 2025 #224 A Conversation With Mat Weisfeld of VPI Industries by Joe Caplan Nov 03, 2025 #224 Blues-Rocker Kenny Wayne Shepherd Celebrates 30 Years of Ledbetter Heights by Ray Chelstowski Nov 03, 2025 #224 Playing in a Rock Band, 17: When Good Gigs Go Bad, Part Two by Frank Doris Nov 03, 2025 #224 From The Audiophile’s Guide: Dealing with Odd-Shaped Rooms by Paul McGowan Nov 03, 2025 #224 TEAC’s TN-3B-SE Turntable Plays Bob Dylan by Howard Kneller Nov 03, 2025 #224 PS Audio in the News by Frank Doris Nov 03, 2025 #224 Lost in Translation by Peter Xeni Nov 03, 2025 #224 Reel-to-Reel Roots, Part 23: Better Than Rice Krispies by Ken Kessler Nov 03, 2025 #224 I Bring Joy! by Frank Doris Nov 03, 2025 #224 Screen Test by Rich Isaacs Nov 03, 2025 #224 How to Post Comments on Copper by Frank Doris Nov 03, 2025 #132 Dr. Patrick Gleeson: The Interview, Part Two by Rich Isaacs Oct 07, 2025 #223 World Fusion Meets Flamenco in Gratitude from Steve Mullins and Rim of the Well by Frank Doris Oct 06, 2025 #223 Judging Albums by Their Covers by Rich Isaacs Oct 06, 2025 #223 Recent Arrivals and 12-inch Royalty by Rudy Radelic Oct 06, 2025 #223 Summer of Creem, Part Two by Wayne Robins Oct 06, 2025 #223 Recording Engineer Barry Diament of Soundkeeper Recordings: Striving for Natural Sound by Frank Doris Oct 06, 2025 #223 Tea on the Terrace by B. Jan Montana Oct 06, 2025 #223 How Good Can Car Audio Get? by Joe Caplan Oct 06, 2025 #223 The Advantages of a Dedicated Listening Room by Paul McGowan Oct 06, 2025 #223 1! 2! 3! 4! Surrounded by the Ramones in Dolby Atmos! by Frank Doris Oct 06, 2025

What is a CD player?

We all understand what a CD player is; a box we insert CDs and play them.

But, not so fast. What’s going on inside? What are the basic elements of a CD player and why do Audiophiles not use them very often, preferring instead CD transports and DACs?

Back to the beginning

On October 1, 1982, Sony placed the first nail in the LP’s coffin with its release of the world’s first commercial compact disc player, the CDP-101, in Japan. The launch signaled a new audio medium that promised to deliver a crystal-clear music experience for a generation of consumers accustomed to vinyl records.

It was touted as “PerfectSound Forever”. It was anything but perfect.

The CDP-101 retailed for about $674 (roughly $1609 in today’s dollars), and was launched alongside a group of 50 classical and pop CDs published by CBS Records. Names like Mozart, Tchaikovsky, and Schubert shared the bill with more modern artists such as Billy Joel, Pink Floyd, and Journey. Each disc cost $14 apiece (about $33 in today’s dollars).

From vinyl to optical

It was Sony and Philips that together invented the CD player, though they hadn’t come up with the technology itself. Instead, American engineer James T. Russell invented the first system to record digital information on an optical transparent foil. He applied for a patent in 1966, and it was granted in 1970. Sony and Philips hijacked the technology, at first for laser discs, later for the audio CD, but Russell (and the company he had sold the patent to) took them to court and won, forcing them to license his invention.

That first player

So, what was inside that first player? The same three basic elements found in every CD and DVD player today: a turntable, an optical reader, and a DAC.

Let’s first take a look at the turntable and optical reader.

The turntable is exactly what it sounds like, a spinning platter that rotates the CD itself. Speeds are quite a bit faster than an album, averaging 600 rpm as opposed to 33 1/3 rpm for vinyl. When you place a CD atop the turntable, the label faces you, the optical surface with all the bits faces down.

Below the CD optical disc waits a laser mounted to a moving sled or carriage. The carriage can move back and forth along the CD as it spins. In close proximity to the laser beam is a photo receptor that converts the reflected laser light into an electric current.

Once converted to electrical signals, the ones and zeros we’re so familiar with are sent to the CD player’s internal DAC.

The DAC inside

DAC stands for Digital To Audio Converter. As its name implies, this circuitry takes the ones and zeros we call digital audio, and converts their message into audio—sound we can then use to play through speakers or headphones.

The bits of digital audio form a type of machine language with words, just like in any language. In digital audio, words represent numbers, and each number represents a higher or lower part of the music’s loudness.

The maximum number of bits within a word determine the number of possible words. CD words have 16 bits, which means CD systems are limited to 65,536 words (compared to 16,777,216 possible words in a 24 bit system). Within those restrictions, digital words form louder and softer levels that the DAC turns into sound.

The difference between a CD player and transport

Most Audiophiles no longer use CD players, preferring instead to separate the duties of the CD player into two separate pieces of equipment, the Transport and DAC.

An aftermarket transport contains the turntable, laser mechanism, photo receptor, and associated electronics to convert what is on the CD to electrical ones and zeros.

One of the more interesting aspects of the optical extraction process is the format the ones and zeros are prepared in, called I2S.

I2S (pronounced, “I squared S”) has multiple elements of digital audio: several clocks and the digital music data itself. Clocks are needed to keep all the bits coming at the proper time and organizes the order in which they appear.

Some transports output this I2S format, but most do not. Instead, the four separate digital audio clocks and data of I2S, are mixed together and output through a single RCA connector, optical cable, or XLR. This new format, which must later be untangled back into I2S inside the DAC, is known as S/PDIF, an acronym for Sony Philips Digital Interface.

Why CD players have fallen out of favor

The vast majority of high-end audio systems separate the duties of the all-in-one CD player into two units, the transport and DAC. Separating these necessary components in a digital audio system results in better sound, or at least that’s the theory.

There’s no reason whatsoever that separating CD players into two chassis is superior other than the fact it permits manufacturers to lavish more attention on each, as well as allows consumers to mix and match to best advantage.

The venerable all-in-one CD player might just have a comeback someday, if enough high-end manufacturers decide it’s something their customers want. Otherwise, CD players—the very equipment that forever changed the audio landscape—will likely be relegated to the basement and audio museums.

0 comments

Leave a comment

0 Comments

Your avatar

Loading comments...

🗑️ Delete Comment

Enter moderator password to delete this comment: